首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10288篇
  免费   1255篇
  国内免费   1267篇
  2024年   13篇
  2023年   99篇
  2022年   149篇
  2021年   401篇
  2020年   362篇
  2019年   426篇
  2018年   405篇
  2017年   361篇
  2016年   429篇
  2015年   619篇
  2014年   757篇
  2013年   845篇
  2012年   992篇
  2011年   893篇
  2010年   662篇
  2009年   561篇
  2008年   670篇
  2007年   629篇
  2006年   506篇
  2005年   477篇
  2004年   444篇
  2003年   439篇
  2002年   453篇
  2001年   229篇
  2000年   185篇
  1999年   168篇
  1998年   116篇
  1997年   95篇
  1996年   74篇
  1995年   49篇
  1994年   60篇
  1993年   31篇
  1992年   26篇
  1991年   30篇
  1990年   27篇
  1989年   22篇
  1988年   15篇
  1987年   14篇
  1986年   20篇
  1985年   9篇
  1984年   10篇
  1983年   5篇
  1982年   10篇
  1981年   5篇
  1980年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
55.
DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR‐sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild‐type EGFR remains modest. We showed that DYRK1A repression could enhance the anti‐cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild‐type NSCLC cells. In addition, harmine could enhance the anti‐NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti‐cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild‐type NSCLC patients.  相似文献   
56.
Doxorubicin (DOX) is widely used to treat various cancers affecting adults and children; however, its clinical application is limited by its cardiotoxicity. Previous studies have shown that children are more susceptible to the cardiotoxic effects of DOX than adults, which may be related to different maturity levels of cardiomyocyte, but the underlying mechanisms are not fully understood. Moreover, researchers investigating DOX‐induced cardiotoxicity caused by human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) have shown that dexrazoxane, the recognized cardioprotective drug for treating DOX‐induced cardiotoxicity, does not alleviate the toxicity of DOX on hiPSC‐CMs cultured for 30 days. We have suggested that this may be ascribed to the immaturity of the 30 days hiPSC‐CMs. In this study, we investigated the mechanisms of DOX induced cardiotoxicity in cardiomyocytes of different maturity. We selected 30‐day‐old and 60‐day‐old hiPSC‐CMs (day 30 and day 60 groups), which we term ‘immature’ and ‘relatively mature’ hiPSC‐CMs, respectively. The day 30 CMs were found to be more susceptible to DOX than the day 60 CMs. DOX leads to more ROS (reactive oxygen species) production in the day 60 CMs than in the relatively immature group due to increased mitochondria number. Moreover, the day 60 CMs mainly expressed topoisomerase IIβ presented less severe DNA damage, whereas the day 30 CMs dominantly expressed topoisomerase IIα exhibited much more severe DNA damage. These results suggest that immature cardiomyocytes are more sensitive to DOX as a result of a higher concentration of topoisomerase IIα, which leads to more DNA damage.  相似文献   
57.
Understanding the electric double layer is essential for achieving efficient electrochemical energy storage technologies. A conventional solid–liquid electrode interface suffers from serious self‐discharge and a narrow voltage window, which makes the development of a solid–solid interface imperative. However, an in‐depth understanding of the electric double layer with a solid–solid interface is lacking. Here, a solid–solid interfacial electric double layer is proposed with excellent electrochemical performance. The solid layer is constructed by the electrochemical decomposition of lithium difluoro(oxalate)borate, which provides a desolvated environment for the establishment of a electric double layer. This makes a stronger interaction between the electrode surface and the ions. Based on this unique property, it is found that the solid–solid interfacial electric double layer has an increased capacitance, which suggests a way to develop high‐energy electrochemical capacitors.  相似文献   
58.
Transition metal layered oxides have been the dominant cathodes in lithium‐ion batteries, and among them, high‐Ni ones (LiNixMnyCozO2; x ≥ 0.7) with greatly boosted capacity and reduced cost are of particular interest for large‐scale applications. The high Ni loading, on the other hand, raises the critical issues of surface instability and poor rate performance. The rational design of synthesis leading to layered LiNi0.7Mn0.15Co0.15O2 with greatly enhanced rate capability is demonstrated, by implementing a quenching process alternative to the general slow cooling. In situ synchrotron X‐ray diffraction, coupled with surface analysis, is applied to studies of the synthesis process, revealing cooling‐induced surface reconstruction involving Li2CO3 accumulation, formation of a Li‐deficient layer and Ni reduction at the particle surface. The reconstruction process occurs predominantly at high temperatures (above 350 °C) and is highly cooling‐rate dependent, implying that surface reconstruction can be suppressed through synthetic control, i.e., quenching to improve the surface stability and rate performance of the synthesized materials. These findings may provide guidance to rational synthesis of high‐Ni cathode materials.  相似文献   
59.
60.
Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号